Water Mill cum Hydro Electric


Lima Mill used for grinding 

                                                                                                                     Photo Source:angelfire.com

                                                Water mill is one of the traditional kind of grinding wheel that uses wheel or turbine to drive a mechanical process for various end use such as flour grinding,lumber or textile production.This type of technology is applicable in hill areas where there is enough head for running turbine. The water diverted from river or canal provides enough kinetic energy to drive wheel or turbine via head race channel or pipe.The force of the water’s movement drives the blades of a wheel or turbine, which in turn rotates an axle that drives the mill’s other machinery.

                                          Water leaving the wheel or turbine is drained through a tail race, but this channel may also be the head race of yet another wheel, turbine or mill.This kinda of water mill is suitable in hilly and Himalayan region of Nepal where enough head is available.Not only for milling but it can generate electricity which can empower local community which can contribute for decreasing load on central load distribution.

Water Mill cum Micro hydro in Aghakhola, Palpa

                           This is good example of use of appropriate technology helping people to live under light. The micro-hydro generates electricity to operate mill services for customer and provides power in night to local resident in vicinity. 


Journey form Training to Trainer : As Light of Hope Continues



                      Energy has been one of the basic requirement of human beings. The traditional use of fossil fuel is gradually shifting with advent of cleaner and greener technology. And change in people perception and consciousness about climate impacts, global warming and green house effects. RAN (Robotics Association Nepal) is one of Nepal’s best institutions trying to promote technology for generating holistic relation between machine and human.

                             The #LIGHTOFHOPE is audacious project initiated by RAN with agenda to connect rural livelihood to basic energy use like lighting and charging system. The process is to connect rural and earthquake affected area to primary energy use. The deprivation of energy & energy crunch is not only hampering economic activities but education of students. So #lightofhope aims to bring back hope to people to re-start life. Everything is broken but there stands only hope that things will get better. #LightofHope tires to embolden resilience, empathy and provide strength to return to normal living for Nepalese people who are beyond electric grid connection.

                                The Shree Nawalpur Secondary School was place for solar training and distribution. The place being in vicinity of Melamchi, still lacked proper road and electric connection. The event was already planned and well arranged by local partner YUWA Nepal. Primary task was to train ninety student, equip them for repair & maintenance, and distribute 5W solar system with light and charging system. We could see curious, energetic and bold ninety students, school authority, local experts being in school. We were really glad despite public holiday of Saturday people were kind enough to show up. The main objective was to give introduction about renewable energy, detail about solar system, component of solar system, repair & maintenance and about how solar can good business opportunity.

                                      Personally there is great difference in being with the crowd and handling the crowd. Being in training helped me to learn and nurture self. I was always obliged and felt privileged to get such opportunities. This was time to pay back or simply spread good vibes for others. I tried as much as being basic about facts and in mean time holistic. The major point I was careful not to let voids between by talks and student listening. The sessions was quite interactive, reaching student asking them and they asking back their queries. I was able to reach their psyche to some extent inspire them to lead from grass root. It was amazing to teach, hear, learn and share among students. The latter solar as business opportunities was carried out by Binod Pangeni. This session was especially designed to promote business opportunities that can or comes with solar technology. The main idea behind this was to encourage student to find solution within country and to remind them there are possibilities as well as potentialities developing country and making money in Nepal.

                                                    The journey to and fro Sindhupalchowk was full of fun. It was great conversation with fellow travelers local resident Aunt who rose my curiosity about place, her experience after earthquake, how grateful she was to have young people like us helping them, the hardship they have been through, hope & resilience they had despite their homes were completely turned down, her future dream to rebuilt house. Thanks to volunteers from Australia and Germany for being here selflessly to be part of re-construction. It was great to catch up with you guys. Oh! Driver dai, your story and reasoning and loud music system made us inexhaustible throughout travel. It simply helped us to be cheerful. Many many thanks to Bikash Gurung dai for providing wonderful opportunity to actually go to different part and shade some knowledge I had. It was great to reach people in local level and empower them. #LightofHope continues for adding hope for rural livelihood and re-construction after earthquake, shading light raising people’s aspiration.


About Robotics Association Nepal.

Robotics Association of Nepal (RAN), is not-for-profit, non-governmental organization which is continuously working in the field of robotics and electronics automation since its establishment (2010). Each year we celebrate festival of art, science and technology “Yantra”. Robotics Association of Nepal has built a network of students RAN Representatives (RR).

Solar Dryer

                     The food production especially fruits and vegetables are surplus during the harvesting season, resulting in low selling price. Towards the end of the season the produce which was not sold goes uneaten or rots. Similarly, in alpine climate the food production is limited to few months in a year. Hence food preservation is important, among the various techniques available sun drying is one of common. 


                               Basically, drying involves the extraction of moisture from the product by heating and the passage of air mass around it to carry away the released vapor. Under ambient conditions, these processes continue until the vapor pressure of the moisture held in the product equals that held in the atmosphere. Thus, the rate of moisture released from the product to the environment and absorption from the environment are in equilibrium, and the crop moisture content at this condition is known as the equilibrium moisture content. Under ambient conditions, the drying process is slow, and in environments of high relative humidity, the equilibrium moisture content is insufficiently low for safe storage. The objective of a dryer is to supply the product with more heat than is available under ambient conditions, thereby increasing sufficiently the vapour pressure of the moisture held within the crop and decreasing significantly the relative humidity of the drying air and thereby increasing its moisture carrying capacity and ensuring sufficiently low equilibrium moisture content.

                         In solar drying, solar-energy is used as either the sole source of the required heat or as a supplemental source. The air flow can be generated by either natural or forced-convection. The heating procedure could involve the passage of preheated air through the product or by directly exposing the product to solar radiation or a combination of both.

                    Solar energy is an obvious energy source to use for drying many products, particularly food crops. Many crops are harvested in the summer months and are usually dried at temperatures below 700C – a temperature which can be readily attained by solar technology. 

                     The importance of food drying is likely to increase. Nepal suffers from serious food crisis. Out of 75 districts 41 districts have food shortage and experts from the United Nations warn that the situation is bound to deteriorate. Annually huge relief funds from international and government budget is allocated for food supply in the regions with supply deficit. Further the Government figures say food deficit has tripled in recent years with most of the increase since 2009 drought.

                        A solar dryer uses the energy from the sun to dry food efficiently and hygienically with little capital investment. The dried food life may be extended to a year or more depending on the process.  In addition to foods for human consumption there are many other products we use that require drying. These include organic crops like timber and rubber and inorganic materials like paint. All of the above arguments emphasize the importance of drying in our lives. 


                         Drying is also an energy intensive process. The shortage of energy is an issue for many countries, particularly those in the developing world. Even where conventional energy is plentiful, there is pressure to reduce the amount of fossil fuels used. Concern over global warming is universal and this has focused our attention on energy intensive processes like drying where fossil fuels can often be replaced by renewable and non-polluting sources of energy. 


                     Drying involves the removal of the internal moisture to the surface and then to remove this moisture from the surface of the drying material. The sun has been used for drying as long as humans have inhabited the planet and laying a product out in the sun to remove its moisture is known sun drying. When sun drying, the temperature of the surrounding air remains at ambient temperature, while the temperature of the product is raised by the direct absorption of solar radiation. Although sun drying is still by far the most common method of drying it does have several inherent disadvantages. The unprotected crop can be damaged by rain, contaminated by dirt and animals and/or eaten by birds and insects. Since the temperatures attained during sun drying are usually lower than in a solar dryer, drying times are longer. This usually results in poorer final quality because of color discoloration caused by enzymic and non-enzymic browning, and often because of the formation of moulds.In a solar dryer however the temperature of the air surrounding the product is raised above the ambient air temperature. Depending on the type of solar dryer, the temperature of the product may also be raised by direct absorption of solar radiation. The temperatures in a solar dryer are higher than in sun drying and this reduces the drying time and usually improves the final product quality. Crop losses and spoilage from rain and animals are prevented because the crop is protected within the solar dryer. 




                   There are many different types of solar dryer but they can all be conveniently classified into three distinct categories depending on the mode of heat transfer from the sun to the product.